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The kinetics of ordered domains in monolayer deposition 
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In this work, we study the growth of ordered domains observed during deposition of a monolayer. We use mean field lattice 
gas model to describe the kinetics. Our results on the calculated dynamical structure factor provide insights on how the 
growth of ordered domains depends on the adatom/adatom interaction and the role played by the competition between the 
deposition and the diffusion processes. Using the dynamic scaling, we show that the growth of these ordered domains is 
characterized by the growth and the roughness exponents values: 05.064.22  ; 04.036.22  , satisfying the Kardar-

Parisi-Zhang relation for d>1.  
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1. Introduction 
 

Physical and chemical properties of adsorbed 

monolayers are being studied with increasing interest [1-9] 

because their understanding is essential for the 

rationalization of many phenomena and processes 

occurring on surfaces and interfaces, such as adsorption, 

catalysis, corrosion, wetting, adhesion, diffusion, etc. In 

particular, ordering kinetic information on the surface 

diffusion has been obtained using low energy electron 

diffraction (LEED) and scanning tunneling microscopy 

(STM) [10] with quantitative information obtained from 

the Fourier transform of the current correlation function. 

 

 
 

 
Fig.1. schematic of island formation obtained during the 

diffusion of the deposited atoms 

 

Considering the deposition and diffusion of particles 

on a surface, one has two characteristic constants: the flux 

F and the diffusion coefficient D, where 1/D is 

proportional to the typical time between two hops. Due to 

the competition between deposition and diffusion, one 

expects that all physical processes depend on the ratio 

D/F. If p denotes the coverage, then p=F.t, where t 

represents the time. The figure 1 schema represents the 

deposition and the diffusion processes during the island 

formation. 

In this paper, we focus on the early time morphology 

for which the coverage is less than one monolayer; this 

regime is usually referred to as submonolayer epitaxy.  

What is the surface ordering kinetic at a fixed value 

D/F in the submonolayer regime? The answer to this 

question depends on different parameters and can be 

extracted from the Fourier transform of the current 

correlation function which has been shown to be 

proportional to the square of the linear dimension « l » 

representing the ordered domain [11-14]. 

In this investigation, we address the questions of the 

kinetics of ordered domains in monolayer deposition in the 

framework of mean field lattice gas model. In the section 

II, we present the model and the formalism of the our 

work. In the section III, we calculate the dynamical 

structure factor corresponding to the diffracted intensity in 

LEED for several interactions and D/F values. Our 

calculations are done for repulsively interaction system. 

We have also determined the growth and the roughness 

exponents values. The obtained results are compared to the 

experimental ones. The section IV represents the 

conclusion of this paper. 
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2. Model and formalism 
 

In our study, the crystalline surface is modeled by a 

lattice of size L x L with sites coinciding with the positions 

of the potential minima available for the diffusing 

particles. Every site of the lattice can be either occupied or 

empty. We introduce an occupation number ni where i is 

the site label and n takes respectively the values 1 or 0, for 

occupied and empty site, respectively. The thermodynamic 

is completely determined by specifying the Hamiltonian of 

the system. Here, for the sake of simplicity, only the static 

pair interactions are taken into account. The Hamiltonian 

is then written as:    
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where the summation is over all nearest neighboring sites 

<ij>. ij is the pair repulsive interaction energy of the 

particles at sites i and j. tFLtN 2)(   represents the number 

of the deposited atoms at time t and    is the external 

chemical potential. 

Let the configuration {n} = (n1,n2,…,nN) denotes an 

occupation state of every site of the lattice. The diffusion 

process of the particles is insured by the change of the 

occupation numbers of the lattice sites. This can be seen as 

the change of the lattice configurations.  

Hence, the dynamics are described by the choice of the 

transition rate between possible configurations. The latter 

is given by, 
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where the last Kronecker symbol is referring to the two 

configurations separated by the jump of only one particle; 

ijij nnnn   denotes the permutation of the occupation 

numbers of sites i and j; and the product ni(1-nj) ensures 

the hard core exclusion condition which prohibits the 

double occupation at a given site. 

It is clear that the transition frequency ignores the 

state around the arrival site in the transition rate and does 

not reflect the whole complexity of the diffusion process. 

With this choice, we define a stochastic process which is 

well described by the knowledge of the distribution 

probability of existence at time t: P ({n}, t). The time 

evolution of this probability determines the dynamics of 

the lattice gas model. Here, we consider that the dynamics 

are governed by the following master equation:  
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Equation (3) which is phenomenological, favors the 

establishment of the desired configuration. Its stationary 

solution must lead to the equilibrium distribution, 

    H
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Z is the partition function given by: 
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Hence, the transition frequency has to satisfy the 

detailed balance condition, 
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The average concentration over all possible 

configurations is defined by, 
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The kinetic evolution of the average concentration 

 kk np  at site k, is governed by the general master 

equation, 
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where   njk   is the jump probability from site j to site 

k, depending on the local configuration. Clearly, this 

probability will ultimately depend on the energetic of the 

system. The product nj(1-nk) imposes that site j is filled 

while site k is empty (resulting from the hard-core 

exclusion principle). We restrict the jumps to those 

between nearest neighbors sites k and k+a. At this stage, it 

is convenient to introduce a current operator   nj akk ,  

along the bond akk   . Equation (8) becomes then, 
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and the average current in the bond (i, j) is, 
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  is the isolated (single) jump probability; 

 TKB denotes the normalized interaction energy. The 

kinetic equation (9) is intractable in its present form and 

simplifications are necessary. 
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The simplest approach is the mean field 

approximation that consists in replacing all operators nk 

for the jump probability   nij   by their average 

concentration pk at the same site k [15]. 

Hence, equation (9) becomes, 
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where the general expression of the current is written as, 
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3. Dynamical Structure Factor: Results and  
     discussion 
 

In the present study, we use a square lattice of size L x 

L sites in which the adsorbate particles diffuse according 

the above formalism, and we focus on a fractional area 

with M atoms and linear dimension 1/2Ml representing 

the ordered domain. We calculate the dynamical structure 

factor t)(q,S  representing the diffracted intensity in 

LEED, expressed in the framework of the lattice gas 

formulation by:                                                 
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where mkR ,  is the relative position between the sites k and 

m. q is is the deviation parameter from the Bragg 

condition and (t)kmG  is the density correlation function 

defined as:                                                        

                                                  

 )()()(km tptptG mk                       (15) 

                                           

The evolution of t)0,(q S  with time is therefore 

proportional to < M (t) > representing the mean number of 

atoms in the ordered domains [16]:                                                           

                                                 
2),(t)0,(q lTtMS                  (16)    

                                   

For early times in the deposition process, the ordering 

domains linear dimension l is expected to grow with a 

power law of time [16],     

 


tl                               (17) 

 

 where   is the growth exponent. At a characteristic 

saturation time Z
c LLt )(  (z is the dynamic exponent), l 

scales as LtLl  ),(  where   is the 

roughness exponent.  

Hence the ordered domain linear dimensions satisfy 

the Family-Vicsek ansatz [17]: 
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where the scaling function f(x) behaves as: 
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Taking into account equations (16), (17), and (91), S (q=0, 

t) can be re-written as: 
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We have calculated the dynamical structure factor S 

(q, t) for a system with square lattice of size L x L sites and 

for different ratios D/F. The obtained results for different 

time values show that S (q, t) presents a symmetric peak at 

q=0. We have only presented results for values 0q , 

where we note that the dynamical structure factor 

increases with time indicating the temporal growth of 

ordered domains. The different peaks observed in figure 1 

are best fitted by a Gaussian domain-size (length) 

distribution, consistent with the one observed for O/W 

(110) system [16]. 
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Fig. 2.  A plot of the dynamical structure factor at ratio 

D/F=3 and for different times. The interaction energy 

value is fixed at 6.1  

 

In order to investigate the scaling in the growth 

kinetics, we have fixed the interaction value at 1.6 and we 

have calculated the ratio    tStqS max,  versus q/qFWHM for 

different time values, with Smax(t)  representing the 

maximum intensity of S(q,t) at time t and qFWHM  is the 

Full width at Half Maximum. The corresponding results 

are reported in figure 2 in which we observe that the 

intensity profiles collapse on a unique curve, indicating 

that, this ratio can be written as:  

 

   )(),( max FWHMqqftStqS              (21) 

 

where f(x)= constant   is a scaling function. Hence, 

this scaling in the ordering kinetics of monolayer 
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deposition is self-similar and its morphology can be 

determined at any times. 

To check the effect of the deposition and the diffusion 

process on the ordered domains kinetics, we have fixed the 

interaction value at 6.1 and we have calculated Smax(t) 

as a function of the ratio D/F. The results are reported in 

figure 3. From this figure, we note that the maximum 

intensity of S(q,t) increases with the diffusion coefficient, 

indicating that the ordered domains are reaching their 

equilibrium shapes. 
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Fig 3. Ratio between the intensity profile t)(q,S and its 

peak intensity Smax(t) versus q/qFWHMat ratio D/F=3 and 

for different times. 

 

The interaction energy value is fixed at 6.1 . The 

data collapse on one curve. 
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Fig.4. The peak intensity versus D/F at t=60. The 

interaction energy value is fixed at 6.1  

 

 

As indicated in Fig. 1, the maximum intensity Smax(t) 

increases with time. In order to gain insight into this 

behavior, we have analyzed the time evolution of Smax(t)  

by means of the dynamic scaling approach. Thus in figure 

4, we report the maximum intensity Smax(t)  versus time t 

on log-log scales for different sample sizes. We remark 

that Smax(t) presents  two different regimes separated by a 

cross-over time. The same behavior was also found in  

[18-20]. The results shows that before saturation, Smax(t)  

increases with the exponent 05.064.22   , ( tl  ). The 

saturated value of Smax(t)  sketched as a function of the 

system lateral size. The calculations on log-log plot leads 

to a roughness exponent 04.036.22  , in Llsat  . 

However, the obtained exponents values of  and z = 

 the dynamic exponent, leads to the relation 

07.2 z more consistent with the one predicted by 

the Kardar-Parisi-Zhang class for systems with 

dimension 1d  [20, 21]. 

In order to prove the Family-Vicsek law presented by 

Smax(t), we have reported in figure 5, satStS maxmax /)(   versus 

t/tx where tx is the cross-over time which separates the 

growth and the saturated regimes. We notice that all the 

curves collapse, indicating that Smax(t) satisfies the Family-

Vicsek law and  thus can be written as  
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Fig.5. The time evolution of the peak intensity on log-log 

scales at ratio D/F=3 and for different system sizes. The 

interaction energy value is fixed at 6.1  
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Fig. 6. Ratio between the peak intensity Smax(t) and its 

saturation value Smax
sat  versus t/tx at ratio D/F=3. The 

interaction energy value is fixed at 6.1 . The data 

collapse on one curve. 
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4. Conclusion 
 

If we wish to understand the morphology and the 

structure of the interfaces observed in the molecular beam 

epitaxial (MBE) phenomena, we must have a correct 

picture concerning the early time behavior. Thus the 

kinetic ordering of islands formation is an essential step 

toward a complete understanding of deposition process. In 

this work, we have studied the ordering kinetics 

established during the process of a monolayer deposition 

within the context of the mean field lattice gas model. We 

have showed how the growth of the ordered domains 

depends on the adatom interaction, the deposition flux and 

the adatom diffusion coefficient. Our results indicated that 

this growth is self similar. The obtained results are 

consistent with the one observed experimentally by using 

the low electron energy diffraction (LEED). However the 

use of the dynamical scaling shows that the growth of the 

ordered domains satisfies the Family-Vicsek ansatz. 
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